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Introduction 
This document describes the design approach to Glacier, a protocol for securely manage one’s own 
storage of Bitcoins (as opposed to using a third party wallet service). It is designed for the following use 
case: 
 

1. Personal storage (vs. institutional) 
2. A large amount of Bitcoin ($100,000+, no maximum) 
3. Long-term storage (years or decades) 
4. Infrequent transactions (i.e. savings, not spending) 
5. No highly-resourced targeted attacks (e.g. being personally targeted by a sophisticated criminal 

organization) 
6. Technical unskilled users (diligence and technical literacy will be required, but not expertise) 

 
This document outlines the high-level approach for the Glacier protocol.  The full step-by-step protocol 
is available at http://glacierprotocol.org. 
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Overview 
The full Glacier protocol is a document which will outline a highly-detailed, step-by-step process for 
high-security cold storage of bitcoins, plus with a small piece of companion software, GlacierScript.  
 
Key aspects of Glacier include: 
 

● Multi-signature wallets, with processes & sufficient key count to account for scenarios such as 
death of a signatory, lost keys, etc.  

 
● Keys stored on paper, in separate locations, with processes for periodic visual inspection to 

verify continued custody & integrity 
 

● Combining entropy from two sources, casino-grade dice and /dev/random, to defend against 
compromise of either single source 

 
● Performing all crypto operations on factory-sealed computers, with all wireless hardware 

removed, never to be connected to a network 
 

● Performing all crypto operations in an Ubuntu instance, booted from USB & running on RAM 
disk, so no data can be written to persistent media 
 

● Only moving data (i.e. private keys, signed transactions) off the aforementioned “crypto 
computers” via hand transcription or QR codes (no networks, USB sticks, printers) 
 

● Taking care to avoid malware infection of the crypto computers (by using factory-sealed USB 
drives to move application software to the computer, verifying checksums of all software 
packages, etc.) 
 

● Using deterministic methods to generate keys from entropy, and running all processes that 
generate sensitive data (keys, addresses, transactions) twice,  once on each of two different 
secure computing environments.  This detects attacks which generate or display flawed data -- 
if data matches, compromise is highly unlikely. 
 

● Accepting some tradeoffs due to lack of available tools / ease of initial implementation:  Allowing 
address reuse, and no BIP39 / HD wallet support 

 
The remainder of this document describes the reasoning behind the above decisions.  
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Design Principles 
Principle 1:  Very Low Risk Tolerance 
Striving for “maximum” security is both futile (there’s no such thing as zero risk) and expensive (security 
usually comes at a cost).  Indeed, to the extent we “overshoot” and design Glacier to be too  secure, it 
will also be unnecessarily costly .  Fewer people will use it, and it will do less good in the world. 
 
While mindful of this, we nonetheless consciously decided to adopt a very low risk tolerance and take 
steps to defend against obscure attack vectors.  We think this is appropriate because attack vectors 
which are obscure today may be common tomorrow: 
 

● Glacier is intended to be appropriate for long-term storage.  If Bitcoin adoption explodes, the 
incentive for attackers explodes proportionately.  You have to assume that well-funded criminal 
organizations will deploy sophisticated malware in the years ahead. 
 

● As common attack vectors get closed due to maturing security tools and practices, attackers will 
be forced to use the more obscure attack vectors. 
 

● If Glacier becomes popular, it will be used to store a lot of funds, and attackers will have an 
incentive to exploit Glacier’s specific vulnerabilities, even if those vulnerabilities are obscure 
today. 

 

Principle 2:  Prefer Risk Elimination over Risk Reduction 
When looking at an obscure risk vector, it can be tempting to say “this is too far-fetched -- we don’t 
need to protect against this.”  
 
For example, one may consider generating private keys using dice, because random number 
generators can have vulnerabilities.  But should we worry about which  dice we use?  Regular dice 
certainly are biased, but is this bias actually exploitable to guess a private key, or is that just paranoia?  
 
Honestly, we don’t know.  It’s difficult to assess, but we do know that hackers surprise us sometimes.  If 
we frequently assume that particular risks are low, and a single one of those assumptions is wrong, it 
exposes a vulnerability that undermines the security of the entire protocol.  
 
In short, it is difficult (and therefore risky!) to assess the degree  of a risk.  Therefore, given Principle 1 
(“very low risk tolerance”), we usually prefer to eliminate  rather than reduce  risk if we can.  (In this 
example, we eliminate risk by recommending the use of unbiased casino dice over regular dice.) 
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Principle 3:  Layered security 
Glacier will be designed with the assumption that there may be flaws in its design or execution.  To 
minimize the risk of failure due to these flaws, we try to include at least two layers of security for every 
attack vector where feasible.  
 

Principle 4:  Simplicity 
Secure cold storage is rare in the Bitcoin ecosystem today in part because it is so overwhelmingly 
time-consuming and takes so much expertise to do it properly.  Glacier exists to fix that. 
  
Following the Glacier protocol should therefore be very straightforward.  It should be: 
 

● Self-explanatory:  Avoiding language or concepts which require more than everyday technical 
skill to understand.  

 
● Self-contained:   If the user gets stuck and needs to resort to Google or ask someone for 

advice, we’ve failed.  
 

● Directive:   The user should need to make as few choices or judgment calls as possible. 
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Principle 5:  Offer Limited Choice 
The question of how to securely store bitcoins is, for the most part, an objective question.  Some 
approaches entail objectively greater risk than others, but for many people, assessing those risks may 
be overwhelmingly complex. Glacier exists in large part to free users from this burden by offering clear, 
specific recommendations rather than putting them in the position of having to choose between options. 
 
That said, there are  limited situations where we believe offering options is appropriate: 
 

● Very different security/cost tradeoffs may be appropriate for different users, whether due to 
personal preference (e.g. differing risk tolerance or cost sensitivity) or personal circumstance 
(e.g. someone wanting to secure $100M vs. someone wanting to secure $100,000). 

 
● One option may not  provide the best possible security, privacy, or experience, but the superior 

alternative may require additional technical expertise to implement with existing tools (and thus 
be inappropriate for much of our audience). 

 
● We may be highly uncertain which option is best, even after deep consideration and 

consultation with other security experts.  We think that acknowledging the uncertainty in these 
cases is helpful as a matter of record for furthering community debate about best security 
practices. 

 
In these situations, the protocol will provide a default recommendation whenever possible in order to 
reduce the burden of choice for users.  Alternatives will generally be mentioned in footnotes.  In cases 
where even a default recommendation seems inappropriate, the protocol will offer guidance as to which 
factors should be used to decide between the given alternatives. 
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Strategic Approach 
 
We have defined security objectives that together prevent the loss or theft of funds. Each objective is 
supported by one or more tactics.  
 

1. Objective: Prevent electronic theft or loss of funds 
 

a. Tactic: Isolate all sensitive wallet operations.  Key generation and transaction signing 
should be done in an environment with as limited means of data extraction as possible. 
Internet access is out of the question. 

 
b. Tactic: Don’t store sensitive data electronically.  Compared to paper, electronic data 

is more subject to theft by malware (you can’t connect paper to the Internet, no matter 
how hard you try).  Electronic storage media are also subject to hardware failure. 

 
c. Tactic: Avoid malware infection by using clean environments.  Malware could 

interfere with the generation or display of sensitive data.  Much like biological surgery 
takes place in a sterile operating room, we can take steps to create computational 
environments that have a very low chance of malware infection. 

 
2. Objective: Prevent usage of flawed sensitive data (keys, addresses, transactions, 

redemption script) 
 

a. Tactic: Avoid malware infection by using clean environments.  Same as 1c above. 
 

b. Tactic: Use verified, reliable software. We select widely-used open-source software 
with a strong track record of reliability and security, cryptographically verify it against 
published checksums, and take care to minimize any possible exposure to corrupting 
malware after verification. 

 
c. Tactic: Detect flawed data by duplicating generation in different environments. 

The data generation algorithms are deterministic.  Given this, if any element of our 
hardware/software stack is facilitating the generation of flawed data, and  that element is 
present in one environment but not the other, then the data generated by each 
environment will be different.  This alerts us to the presence of a problem. 

 
d. Tactic: Use trusted, high-quality entropy.  Most sources of entropy have flaws; for 

example, software algorithms that generate random numbers can be vulnerable to 
exploitation, if they (either due to algorithmic weakness or other security vulnerability) 
provide data that is not truly random.  We use cryptographic techniques to mitigate these 
weaknesses. 
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3. Objective: Prevent physical theft or loss of keys 
 

a. Tactic: Multisignature security.  Prevents possession of a single key (whether 
legitimate possession by a trusted signatory, or illegitimate possession due to theft or 
loss) from enabling theft of funds. 

 
b. Tactic: Secure, distributed storage.  Under lock and key, across multiple locations, to 

further deter against theft or loss. 
 

c. Tactic: Physical resiliency.  Use highly durable paper and/or lamination to record the 
keys. 

 
4. Objective: Ensure long-term access to necessary tools for accessing funds 

 
a. Tactic: Select widely-used, well-maintained tools.  These are most likely to remain 

available and suitable for many years to come. 
 

b. Tactic: Favor simple technical approaches based on public standards.  Should the 
specific tools we recommend become unsuitable for Glacier, it will be relatively easy for 
new tools to incorporate approaches if they are simple and standardized. 

 
c. Tactic: Protocol backwards compatibility.  Ensure that future revisions of the Glacier 

protocol always include instructions for accessing funds stored using all previous 
versions of the protocol.  
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Technical Decisions 

Key Generation 

Use a combination of /dev/random and dice for key generation entropy 
/dev/random and casino-grade dice are both high-quality sources of entropy, yet each has potential 
security risks. 
 
/dev/random is software, and software random number generators can have flaws or vulnerabilities. 
There has been at least one such attack in the past used to steal bitcoins. 
 
True casino-grade dice (which are necessary to protect against cryptographically-significant dice bias) 
should, if used properly, provide near-perfect entropy.  However, “used properly” is not a safe 
assumption.  For example, if a user reads dice in a non-random way (such as in ascending order) most 
of the entropy can be lost.  Even in the face of clear, strongly worded directions, this is a mistake that, 
realistically speaking, some users will make.  Additionally, there is some risk that dice marketed as 
“casino-grade” will be nonetheless biased. 
 
We can eliminate any impact of weakness in one  entropy source by combining both  entropy sources 
using a XOR operation.  This process is: 

● Mathematically sound (proof) 
● Trivial to implement 
● Verifiable, by running it on two separate secure computers and comparing the output  1

 

160 bits of entropy 
Bitcoin addresses are 160-bit hashes of a 256-bit public key.  Any keypair which has a public key that 
hashes to an address can spend the coins at that address.  Therefore, the most entropy that is useful is 
160 bits. This corresponds to 62 dice rolls.  
 

Deterministic key generation 
As described in Tactic 2c, deterministic key generation can help us detect the generation of flawed 
keys.  
 

1 See Tactic 2c for additional context. 
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Hardware Environment 

No hardware wallets 
Hardware wallets such as the Trezor perform Bitcoin operations in relatively simple, highly controlled 
hardware environments that are unlikely to have malware and for which secure data storage (e.g. of 
private keys) is a primary design consideration.  The software and firmware they run is open source. 
They are natural candidates for use in Glacier. 
 
The primary security drawback is that today’s hardware wallets operate via a physical USB link to a 
regular computer.   While they employ extensive safeguards to prevent any sensitive data from being 2

transmitted over this connection, it’s possible that an undiscovered vulnerability could be exploited by 
malware to steal private keys from the device.  Such a vulnerability could be in the wallet’s open source 
software, closed source software (if any), or hardware.  
 
Also, it is nearly impossible to verify that the hardware or software has not been tampered with. An 
attacker could compromise the manufacturing processes, or ship a malicious device that looks like the 
hardware wallet you ordered. 
 
We think that hardware wallets such as Trezor, and Ledger, and KeepKey are great for storing a 
moderate  amount of funds with high  security, but for our use case of large  amounts of funds with very 
high  security, we prefer a more robust approach.   Although the risks with hardware wallets are quite 
small, due to Design Principle 2 (“prefer risk elimination over risk reduction”), we opt for a different 
approach.  See the section on “eternally quarantined hardware” below.  
 

“Eternally quarantined” hardware for cryptographic tasks 
Quarantined hardware  means we take great care to control what information leaves the hardware. 
Generally speaking, this means we try to completely eliminate  most channels that might move data  -- 
whether over a network, USB stick, printer, or other means -- because any  channel might be used by 
malware to steal private keys.  
 
Eternally  quarantined hardware means we use factory-sealed hardware for this purpose (to minimize 
risk of prior malware infection), and never  lift the quarantine (since any malware infection which does 

2 One could mitigate this risk by making sure to only  connect the hardware wallet to a computer that is clean of 
malware, is not connected to a network, and never will  connect to a network.  But then you’ve just recreated the 
security that the hardware wallet was intended to provide (you’ve overshot it, actually), so there’s not much of a point 
in using the hardware wallet`. 
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occur  might wait indefinitely for an opportunity to use an available exfiltration channel).  This renders 3

the hardware essentially useless for anything else but executing the protocol. 
 

No printers 
Modern printers run sophisticated software, and so could be a vector for malware.  They generally 
come with wireless cards, which may not be easily removable.   They also generally store data, 
including private keys, violating Tactic 3b (“don’t store sensitive data electronically”). 
 

Use USBs to transfer software to quarantined environments 
Using any network connection is clearly off-limits, since the attack surface is unnecessarily large.  The 
primary reason for using USBs is that they are ubiquitious and easy to use.  
 
It’s worth noting that the Zcash parameter generation ceremony used append-only DVDs to transfer 
data between systems.  This can help provide evidence of tampering, but because we are only 
transfering known datasets (i.e. specific software distributions), we are able to detect any tampering 
with checksum verification instead. 
 

Non-persistent memory environments for cryptographic tasks 
There are many ways data can get written to disk.  In addition to explicit user request, there are logs 
(application, shell, and OS), caches & memory swap, and so on.  Rather than trying to identify and 
prevent or clean every one of these, it’s safer to just operate in an environment that uses non-persistent 
memory as much as possible. 
 
Our approach is to boot off a USB drive, using an OS that operates entirely within RAM.  All application 
software will be read off a USB drive as well. 
  

3 The primary malware infection vectors for “eternally quarantined” hardware are quite narrow, and include: 
● Firmware infection at the factory 
● The USB drives which are plugged into the quarantined computer to boot the OS and run the application 

software.  This vector is fairly narrow, because we use factory-sealed USBs and cryptographically verify the 
USB’s contents,  We also create the quarantined USBs from an intermediate bootable Ubuntu USB, so any 
malware would need to propagate itself to the intermediate USB and  then the quarantined USB. 
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Software Stack 

Ubuntu 
Given our previous decisions (particularly “non-persistent memory environments for cryptographic 
tasks”), Ubuntu is well-suited to our needs in a number of ways: 

● Ability to boot off a USB 
● Ability to run OS and all applications on a RAM disk 
● Open source with a good security track record 
● Free 

 
The primary alternative we considered is Tails, a Linux-based OS which has security and privacy as its 
primary design goals.  Given our use of an eternally quarantined hardware environment, however, we 
already protect against almost all of the risk vectors that Tails does, so there is little added benefit.  In 
addition, the process for creating Tails USB drives is cumbersome, and we were unable to get it to work 
reliably on all of the laptops we tried. 
 
We also considered macOS, due to Apple’s strong track record with security and user privacy. 
However, in addition to being closed source, Macs do not (to our knowledge) have a way of physically 
removing the wireless cards, which prevents the creation of a strongly quarantined environment.  It also 
doesn’t appear that there is a way to boot macOS off a USB such that it only uses a RAM disk, 
undermining Tactic 1b (“don’t store sensitive data electronically”). 
 

Bitcoin Core 
Bitcoin Core meets several key requirements for our wallet software: 

1. Allows for user-provided entropy (in the form of an imported WIF private key) 
2. Supports multi-sig functionality 
3. Offers means to verify software integrity (via developer-provided checksums) 
4. Well-reviewed open source code 
5. Transparent functionality (RPC console makes clear exactly what operations you’re doing) 

 
Bitcoin Core does have some drawbacks which increase protocol complexity (and therefore increases 
execution risk and lower adoption):  

● The inability to generate a private key from user-provided entropy requires additional 
preparation work to transform user entropy into a WIF private key 

● Lack of support for BIP39 (mnemonic private key generation) 
● Working with Bitcoin Core transactions requires modifying JSON data structures  

 
Electrum is a popular GUI wallet program which we investigated. However: 

● Electrum doesn’t allow users to provide their own entropy.  4

4 It did until recently.  The --entropy parameter to the make_seed command line parameter was recently removed. 
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● There is no automated way to cryptographically verify the integrity of all software dependencies.
  5

● It is difficult to install in the controlled, clean environment we are creating.   6

● Electrum’s multi-signature functionality is oriented around a very different use case, in which 
generating a multisignature wallet requires generating several normal wallets as well.  Signing a 
multisignature transaction is similarly complicated.  The process is cumbersome and confusing, 
which is not only inconvenient but risky as it increases the chance of error in protocol design or 
execution. 

 
We also looked at a variety of other wallet applications, including libbitcoin-explorer (bx), Armory, 
Multibit, bitaddress.org, and many others, and could not find any that met all of the requirements. 

 

GlacierScript 
Glacier requires some operations which Bitcoin Core doesn’t handle, including: 

● Secure combination of multiple entropy sources 
● Conversion of user-provided entropy to WIF keys 

 
In addition, the process of using Bitcoin Core for creating multisig addresses and withdrawals is not 
straightforward, requiring extensive use of the command line API and some outside manipulation of 
JSON data structures.  This complexity not only increases the possibility of user error, but increases the 
general burden of protocol execution, making the cost/benefit of cold storage less attractive. 
 
GlacierScript is a Python script which automates these tasks.  The functionality is designed to be as 
simple as possible.  It does some cryptographic work (namely, generating a WIF private key from 
user-provided entropy), but this is kept to a minimum.  The code is readable and well-commented to 
facilitate review. 
 
Any program has the possibility for flaws or vulnerabilities.  To consider these risks in the context of 
GlacierScript, it’s helpful to think of the alternative not as “no program at all” but “a program with its 
pieces scattered throughout a PDF which the user will copy-and-paste by hand to a command line.” 
The attack surface of GlacierScript does not seem to be higher than the alternative, and the risk of user 
error much lower.  

  

5 We aren’t sure that the python packages on which Electrum depends are verifiable via checksums. Python 
package managers happily install packages where the checksums are missing, so we would need to manually verify 
each package. 
 
6 When booting off a Ubuntu USB, Electrum won’t be pre-installed, so it needs to be installed after booting, using 
packages stored on a second USB drive.  Creating this USB drive is also cumbersome.  apt-get, by default, 
downloads and installs  packages.  Downloading and  verifying integrity without  installing requires a lot of manual 
work. 
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Integrity Verification 

GPG-verify checksums ourselves and hardcode them in the protocol 
 
From a strict security standpoint, it’s not a best practice to ask users to trust the checksums we  provide 
for someone else’s  software, for two reasons: 
 

● We lied about doing the GPG verification, or failed to do it properly, AND nobody has 
double-checked our work to discover the error and raise the alarm. 

 
● Another attacker: 

○ Compromised the official distribution of the software being verified, AND 
○ Compromised our protocol document to update the hardcoded checksum to match their 

malicious code, AND 
○ Compromised the checksum of our protocol document, AND 
○ Compromised the GPG signature of our protocol document checksum, AND 
○ Was unable to compromise the officially-distributed checksum and/or GPG signature of 

the software being verified 
 
These risks are exceptionally small, and the amount of trust required is small compared to the trust 
required for one to adopt Glacier as a whole.  We believe the risks are outweighed by the benefits of 
making the protocol simpler. 
 
All hardcoded checksums will include convenient links for people who wish to manually perform the 
GPG verification themselves based on the official developer-provided checksum and signature. 
 

When visually verifying random data, (good) spot checking suffices 
In multiple areas, Glacier asks users to verify random data (such as a private key or software 
checksum) visually.  When doing so, we recommends that users check only the first 8 characters, last 8 
characters, and a few characters “somewhere in the middle” of a checksum.  There are two reasons for 
this: 
 

● Many people won’t check a full string anyway, even if instructed to do so.  A specific, less 
burdensome instruction has a greater chance of being followed. 

 
● This degree of checking is safe: 

 
An attacker with that’s made a malicious code change could  brute force variations of the code 
(e.g. with each variant containing a unique comment, like an incrementing number) until they 
find a fingerprint that’s similar enough to actual fingerprint to pass most spot checks.   So it’s 
dangerous for the spot check to be too sparse -- for example, checking 3 characters at the 
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beginning and end of a hexadecimal number is a trivial 24 bits of security.  
 
Hexadecimal numbers are the smallest character set we’ll be verifying, so we need a guideline 
robust enough to be secure for hexadecimal numbers.  8 characters at the beginning and 8 at 
the end is 64 bits of security, plus a few characters at some arbitrary place in the middle brings 
things to over 100 bits of effective security.  As of 2012, a typical computer could calculate ~216 
fingerprints per second, at which rate cracking 100 bits would take ~283 seconds, or 1017 years. 
If Moore’s Law holds for this operation, that level of computation will be impractical until the 
latter part of the century. 
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Correctness Verification Using Duplicate Environments 

Use two different environments to generate sensitive data (keys, 
addresses, transactions) 
Per Tactic 2c, all sensitive data should be generated twice, once on each of two different eternally 
quarantined computing environments, to verify the data is created correctly. 
 

Use two different environments to create quarantined USBs 
We will use USB drives to move software to the quarantined computing environments.  These USBs 
will be created using existing networked computers, known as “setup computers”. 
 
There is a possibility for malware to infect the quarantined computers by propagating from an infected 
setup computer via the USB drives.  Such malware would need to be quite sophisticated, as it would 
need to somehow forge false positives for the checksum verifications on the USBs, or infect the 
firmware of the USB drives -- but it is possible. 
 
To reduce this risk, we will use two different setup computers to create the quarantined USBs for each 
of the two quarantined computing environments.  Unless both setup computers happen to have the 
same malware infection, this means that the malware can only make it to one of the two quarantined 
environments.  This stops compromise by malware which generates flawed sensitive data (since the 
flawed data will be detected when the two quarantined environments produce different results). 
 

Both quarantined environments can run the same software stack 
The risk of widely-trusted software (such as Ubuntu or Bitcoin Core) generating flawed sensitive data is 
very small.  Indeed, if such a flaw were widespread, the security of Bitcoin would be undermined to 
such an extent that your bitcoins are unlikely to be valuable enough to be worth securing. 
 
There is  a very small risk that issues with the software may result in flawed data generation in rare 
cases only.  Such an issue might plausibly go undetected by the public, and if you are unlucky enough 
to get hit by such a case, the security of your funds would be affected. 
 
We feel this risk is too small to be worth addressing.  Although Design Principle 2 (“prefer risk 
elimination over risk reduction”) would suggest we should eliminate this risk by running different 
software stacks on each computing environment, this would introduce a significant amount of 
complexity to both the design and execution of the protocol.  In addition, although Design Principle 1 is 
to adopt a very low risk tolerance, that is in part because most small risks will grow significantly with 
Bitcoin’s success, whereas this particular risk would not grow as much. 
 
It might  be a minor improvement for a future version of Glacier to eliminate the risk by adopting different 
software stacks for each environment.  However, we are not prioritizing this for v1.0. 
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Both quarantined environments should have different hardware stacks 
While Glacier’s recommended software is not likely to generate flawed data on its own, it’s possible that 
malware might interfere with either the generation or display of critical data. 
 
Because we’re operating in an eternally quarantined environment, the primary malware infection 
vectors are hardware-related -- e.g. a manufacturer-specific firmware vulnerability, or a USB stick that is 
susceptible to infection of its firmware.  
 
We can significantly reduce this risk by using hardware from different manufacturers for each secure 
computing environment.  This won’t eliminate the risk -- there could be a vulnerability in chips used by 
multiple laptop manufacturers, for example.  But it does eliminate many scenarios (e.g. a vulnerability 
installed in the firmware of a particular manufacturer’s product line).  
 

Transfer data off quarantined hardware through low-bandwidth visual 
channels (QR codes and manual transcription) 
There is a need to move some  data off the quarantined computer.  Individual private keys must be 
distributed to signatories (along with public keys so multisig redeem scripts can be built), and signed 
transactions must be transmitted to the Bitcoin network. 
 
As described previously, the quarantine means the options for moving this data are limited.  There is no 
network access and no printer.  Nor do we want to transfer data off via USB; in the unlikely event of a 
malware infection on the quarantined computer, the USB drive may be used as a channel to relay 
sensitive data to complementary malware on another computer. 
 
For private keys, our solution is to transcribe them from the quarantined computers by hand  using 7

BIP-0039 mnemonics. For public keys and signed transactions, our solution is to transfer them off the 
quarantined computers using QR codes, the content of which can be verified with a manual spot-check.  

  

7 One alternative to storing the keys on paper is to not store them at all -- i.e. memorize them (a “brain wallet”).  Brain 
wallets have several critical drawbacks, the most significant of which is that they’re not well-suited to multisignature 
security -- you probably can’t rely on all of your signatories to memorize a complex mnemonic, nor is there an easy 
way to verify whether their current recollection is accurate. It’s also hard to make a passphrase that is neither too 
easy to remember (and therefore hackable) nor too hard to remember (and therefore forgettable). 
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Side Channels 

Take simple precautions against side channel attacks 
Side channel attacks are not terribly common today, but working implementations exist for a wide 
variety of attacks, and activity in this space has been increasing over the past few years.  
 
While some side channel attacks require two  malicious / compromised devices in close physical 
proximity -- one to transmit data, and one to receive it -- uncompromised devices can still leak data 
through side channels, requiring only one compromised device to detect that data.  
 
For example, there is a working implementation of an iPhone application that can decipher keystrokes 
made on a nearby keyboard (not  on the iPhone) with seismic data (i.e., vibrations detected via the 
phone’s accelerometer).  The process has enough accuracy to radically simplify a brute force attack on 
a private key.  And progress is being made about being able to execute the same attack using acoustic 
data. 
 
This is assuming the quarantined computer is not compromised.  But although we are taking many 
precautions to protect against that, we’re also assuming one quarantined environment could  be 
compromised -- that’s the reason for a duplicate verification environment.  And if a quarantined 
environment is compromised, the opportunity for side channel attacks increases drastically. 
 
Finally, per Design Principle 1, we conservatively assume the sophistication of attacks against Bitcoin, 
and against Glacier in particular, may increase over time. 
 
For all of these reasons, Glacier includes relatively straightforward precautions against side channel 
attacks, such as using a table fan to generate white noise and turning off one’s phone and putting it in a 
Faraday bag.  This will not protected against sophisticated, targeted side channel attacks (for example, 
done by a criminal surveillance team with specialized equipment), but such scenarios are beyond the 
scope of this protocol. 
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Address Reuse and HD Wallets 

Address reuse after withdrawing funds from cold storage is tolerable 
This position is counter to what’s generally considered best practices, for privacy and security reasons. 
However, given that we are not using HD wallets in 1.0, address reuse enables us to do a test 
withdrawal, which is important -- you want to be sure you’re not putting your $10M into an unlockable 
box, especially when the construction of that box is a highly manual process subject to human error. 
 
We think the security drawbacks of address reuse are meaningful but tolerable, and outweighed by the 
reliability benefits of doing a test withdrawal. 
 
Drawbacks are: 
 

● Some argue that Bitcoin’s cryptography is only resistant to quantum computing if addresses are 
not reused. 

 
● Spending address use publicly publishes (to the blockchain) additional mathematical information 

related to the private key.  While this theoretically  should not compromise the security of the 
private key, Bitcoin and its underlying cryptographic algorithms have seen vulnerabilities related 
to address re-use before (1, 2).  Address reuse therefore exposes one to the risk of additional 
unknown vulnerabilities. 
 

● Spending coins from an address requires posting the address’s full public key on the 
blockchain, which reduces the bits of effective entropy in the private key from 2160 to 2128.  This 
by itself is not a significant problem; if Moore’s Law continues as-is, it will take about 100 years 
before a 128-bit key can be brute forced.   But it could become  significant in conjunction with 8

other factors that incrementally weaken security, such as radical technological breakthroughs or 
newly-discovered cryptographic vulnerabilities. 

 
● Less privacy, but this is not a primary design goal of Glacier.  A minor amount of privacy can be 

created by routing funds through an intermediate transaction and/or coin mixers if desired. 
 
Given that we are not using HD wallets in 1.0, benefits of address reuse include: 
 

● Doing a test withdrawal after setting up multisig keys.  The key generation process is complex, 
involving several sets of private keys, addresses,and redemption scripts, on two different 

8 The fastest supercomputer in the world can do 1017 operations per second. Given the (inaccurate but lower-bound) 
assumption that guessing a private key takes only one operation, it would take this supercomputer 2128/1017  = 1021 

seconds to crack a 128-bit key, or about 1013 years. For reference, this is 1,000 times older than the age of the 
universe (1010 years). 
 
Moore’s Law states that the number of transistors on a chip doubles every two years, which is approximately 
equivalent to a 103 increase every 20 years, or a 1015 increase every 100 years.  After 100 years, this would bring 
the time to crack a 128-bit key down from 1013 years to a few days. 
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computers.  Information is transcribed by hand and QR codes.   There’s a lot of possibility for 
human error, and some possibility for error in design of Glacier as well.  

 
● Enabling partial withdrawals without needing to set up a new secure multisig address (which, at 

least with the level of security defined in this protocol, is extremely time-consuming).  
 

Address reuse after depositing funds into cold storage is tolerable 
Reusing addresses for depositing does not have the same security concerns as reusing addresses for 
withdrawing.  It does  have some privacy issues, but avoiding re-use is very expensive (it requires us to 
securely generate and manage a new private key for each deposit, until Glacier is adapted to use HD 
wallets -- see below). 
 
The privacy impact is relatively minor because the cold storage address is unlikely to be used for a 
large number of deposits (it will probably be a small number of large deposits).  This reduces the impact 
to privacy, both for the fundholder and others. 
 
Glacier does  establish some basic privacy by having users route cold storage deposits through an 
intermediary address that they control.  (The alternative, having a third party directly deposit funds into 
a cold storage address, gives the third party direct visibility into the cold storage account.) 
 
Users may opt to use mixers if they value the incremental privacy more than the incremental risk of 
trusting a third-party mixing service. 
 

No hierarchical deterministic (BIP-0032) keys in Glacier v1.0 
Using HD keys could  be quite beneficial to Glacier in terms of privacy and ease of use. However, our 
primary design goal is security, and in the interest of publishing v1.0, we’re considering HD keys out of 
scope for now.  To illustrate why, this section will briefly outline the complications involved in integrating 
HD wallets. 
 
First, let’s acknowledge that not  using HD wallets has significant drawbacks: 
 

● Withdrawing partial funds from cold storage becomes cumbersome.  Without HD wallets, 
you either need to reuse addresses (which negatively impacts security) or securely create new 
multisig change addresses whenever bitcoins are spent. That’s a lot of work. 
 

● Depositing funds in cold storage can impact privacy.  Glacier allows deposit address reuse, 
in order to avoid the tiresome process of securely creating a new private key for each deposit. 
However, re-use does have some privacy impact. 

 
Using HD wallets would mitigate these drawbacks, because it would allow us to generate new 
addresses without having to generate new secure private keys.  
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Unfortunately, the implementation cost is non-trivial, in part because Bitcoin Core doesn’t support 
importing a HD master key (which we need to do, since we are generating our own key based on our 
own entropy) -- it only supports importing an HD wallet.dat file (Bitcoin Core’s native format), which is a 
binary Berkeley DB file.  
 
Creating a wallet.dat file ourselves would require an undesirable amount of complexity for v1.0, and 
maybe for the protocol in general, so we will not be using HD wallets for now.  We’ll advocate for HD 
wallet support in Bitcoin Core. 
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Appendix A: 
Release Notes 

Version 0.9 Beta:  February 10, 2017 
Minor clarifications and formatting improvements for beta release. 

Version 0.1 Alpha:  January 24, 2017 
Initial non-public release to selected reviewers. 
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